Estimation of a sparse group of sparse vectors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of a sparse group of sparse vectors

We consider estimating a sparse group of sparse normal mean vectors, based on penalized likelihood estimation with complexity penalties on the number of nonzero mean vectors and the numbers of their significant components, which can be performed by a fast algorithm. The resulting estimators are developed within a Bayesian framework and can be viewed as maximum a posteriori estimators. We establ...

متن کامل

Algorithms for the Iterative Estimation of Discrete-Valued Sparse Vectors

In Compressed Sensing, a real-valued sparse vector has to be estimated from an underdetermined system of linear equations. In many applications, however, the elements of the sparse vector are drawn from a finite set. For the estimation of these discrete-valued vectors, matched algorithms are required which take the additional knowledge of the discrete nature into account. In this paper, the est...

متن کامل

Group Sparse Priors for Covariance Estimation

Motivation: Estimating a covariance matrix from high dimensional data using a small number of samples is known to be statistically challenging, and yet it is a problem that arises frequently in practice. For some kinds of data, it is reasonable to assume that the variables can be clustered or grouped into types that share similar connectivity or correlation patterns. For example, genes can be g...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

A Sparse-group Lasso

For high dimensional supervised learning problems, often using problem specific assumptions can lead to greater accuracy. For problems with grouped covariates, which are believed to have sparse effects both on a group and within group level, we introduce a regularized model for linear regression with `1 and `2 penalties. We discuss the sparsity and other regularization properties of the optimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2013

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/ass082